Announcement ## Final Exam – Date: Fri, Dec. 15, 1:30pm - 3:30pm **Location: Online** Open book: laptop and digital material – Yes; Chat/ChatGPT – No Final Milestone Presentation – Date: Dec 11th 3:30pm - 5:00pm (Be there at least 15 min ahead of time to setup your 'booth') **Location: Sandbox** Live Demo! Bring your setup to Sandbox early, and prepare to give a live demonstration. Final Milestone Summary – Date: Dec 15 EOD Format: Online https://www.hackster.io/smartlab/projects Documentation + simple video. More details on ELMS. Team Eval Survey – Date: Dec 15 EOD https://forms.gle/sBFZEsk75o74t2bS9 Fabrication + Interactivity | Creative Process CMSC730 | Huaishu Peng | UMD CS - (1) Everyone can design and customize everyday objects. - (2) A personal fabricator will construct both its appearance and functionality. Input: 3D digital model Output: 3D clay model (a) Target 3D model (b) Guidance projected onto material #### **Sculpting by Numbers** Alec Rivers MIT CSAIL Andrew Adams MIT CSAIL Frédo Durand MIT CSAIL) Target 3D model (b) Guidance projected onto material (c) Sculpted physical replica Figure 1: We assist users in creating physical objects that match digital 3D models. Given a target 3D model (a), we project different forms of guidance onto a work in progress (b) that indicate how it must be deformed to match the target model. As the user follows this guidance, the physical object's shape approaches that of the target (b). With our system, unskilled users are able to produce accurate physical replicas of complex 3D models. Here, we recreate the Stanford bunny model (courtesy of the Stanford Computer Graphics Laboratory) out of polymer #### Abstract We propose a method that allows an unskilled user to create an accurate physical replica of a digital 3D model. We use a projector/camera pair to scan a work in progress, and project multiple forms of guidance onto the object itself that indicate which areas need more material, which need less, and where any ridges, valleys or depth discontinuities are. The user adjusts the model using the guidance and iterates, making the shape of the physical object approach that of the target 3D model over time. We show how this approach can be used to create a duplicate of an existing object, by scanning the object and using that scan as the target shape. The user is free to make the reproduction at a different scale and out of different materials: we turn a toy car into cake. We extend the technique to support replicating a sequence of models to create stop-motion video. We demonstrate an end-to-end system in which real-world performance capture data is retargeted to claymation. Our approach allows users to easily and accurately create complex shapes, and naturally supports a large range of materials and model sizes. Keywords: personal digital fabrication, spatially augmented real- Links: DL PDF #### 1 Introduction Most people find it challenging to sculpt, carve or manually form a precise shape. We argue that this is usually not because they lack manual detectity — the average person is able to perform very precise manipulations — but rather because they lack precise 3D information, and cannot figure out what needs to be done to modify a work in progress in order to reach a goal shape. An analogy can be made to the task of reproducing a 2D painting; when given outlines that need only be filled in, as in a child's coloring book or a paint-by-numbers kit, even an unskilled user can accurately reproduce a complex painting; the challenge lies not in placing paint on the canwas but in knowing where to place it. Motivated by this observation, we present Sculpting by Numbers, a method to provide analogous guidance for the creation of 3D objects, which assists a user in making an object that precisely matches the shape of a target 3D model. We employ a spatially-augmented reality approach (see e.g. Raskar et al. [1998] or Bimber and Raskar [2005] for an overview of spatially-augmented reality), in which visual feedback illustrates the discrepancy between a work in progress and a target 3D shape. This approach was first proposed by Skeels and Rehg [2007]. In this approach, a projector-camera pair is used to scan the object being created using structured light. The scanned shape is compared to ### (c) Sculpted physical replica ## Rivers et.al. from MIT 2012 Structured light 3D scanning Compare the scanning result with the 3D digital model Differences are projected at each step with green/red colors ### Limitations of this light guidance idea? Turn-taking (scan at each of the 'step') Would be hard to do with other material such as wood/foam (because there is no additive process for such material) ### Possible solutions? #### FreeD - A Freehand Digital Sculpting Tool Amit Zoran Responsive Environments Group MIT Media Lab amitz@media.mit.edu #### ABSTRACT In this paper, we present an approach to combining digital fabrication and craft, emphasizing the user experience. While many researchers strive to enable makers to design and produce 3D objects, our research seeks to present a new fabrication approach to make unique, one-of-a-kind artifacts. To that end, we developed the FreeD, a hand-held digital milling device. The system is guided and monitored by a computer while preserving the maker's freedom to sculpt and carve, and to manipulate the work in many creative ways. Relying on a predesigned 3D model, the computer gets into action only when the milling bit risks the object's integrity, by slowing down the spindle's speed or by drawing back the shaft, while the rest of the time it allows complete gestural freedom. We describe the key concepts of our work and its motivation, present the FreeD's architecture and technology, and discuss two projects made #### Author Keywords Computer-Aided Design (CAD); Craft; Digital Fabrication; Carving; Milling. #### ACM Classification Keywords H.5.2 [Information interfaces and presentation]: User Interfaces #### TRODUCTION Over the last several years, digital fabrication technologies have altered many disciplines [4]. Today's designers can easily create, download, or modify a Computer-Aided Design (CAD) model of their desired object, and fabricate it directly using a digital process. In developing new manufacturing technologies, engineers seek an optimal solution, reducing the process to as few parameters as possible, and separating design from fabrication. Ease of use, accessibility, proliferation and efficacy grow as technology metalty, proliferation and efficacy grow as technology metalty. However, qualities such as creative engagment in the experience itself are lost. The nature of interaction with the fabricated artifact is rarely the focus of new developments. While the process of engineering minimizes risks, seeks efficiency, and enables automation and repetition, craft is Permission to make digital or hard copies of all or part of this work for Joseph A. Paradiso Responsive Environments Group MIT Media Lab joep@media.mit.edu about involvment and engagement, uniqueness of the final products, and authenticity of the experience [7]. Engaging in an intimate fabrication process and enjoying the experience of shaping raw material are inherent values of traditional craft. As a result of this engagement, handcrafted products are unique and carry personal narratives [10]. Our research interest lies in the cross-section between digital fabrication and the study of the craft experience. We wish to allow designers to engage with the physical material, not only the CAD environment. We hope to encourage the exploration of an intimate digital fabrication approach, introducing craft qualities into the digital domain. Our contribution is a system merging qualities of both traditions: minimizing fabrication risk by using a small degree of digital control and automation while allowing authentic engagement with raw material to achieve unique results. The FreeD is a freehand digitally controlled milling device (Figure 1). With the FreeD we harness CAD abilities in 3D design while keeping the user involved in the milling process. A computer monitors this 3D location-aware tool while preserving the maker's gestural freedom. The computer intervenes only when the milling bit approaches the 3D model. In such a case, it will either slow down the spindle, or draw back the shaft; the rest of the time it allows the user to freely shape the work. Our hope is to substantiate the importance of engaging in a discourse that posits a new hybrid territory for investigation and discovery - a territory of artifacts produced by both machine and man. Figure 1: (A) The FreeD and (B-C) the process of making a bowl from polyethylene foam. CHI 13 and UIST 13 Zoran et.al. from MIT Tracking: 6DOF Magnetic tracking Control: stop milling at the edge of the digital model Control can be overridden with manual control What can this do that the previous project cannot? **Manual override** user can manually switch between different reference virtual models during the work What if we have no digital model at the beginning? What if we hope to design a 3D model **from scratch**? #### D-Coil: A Hands-on Approach to Digital 3D Models Design #### Huaishu Peng Cornell University Information Science hp356@cornell.edu #### Amit Zoran The Hebrew University of Jerusalem (HUJI) zoran@cs.huji.ac.il #### François Guimbretière Cornell University Information Science francois@cs.cornell.edu We introduce D-Coil, a new digital 3D modeling approach using wax coiling to bring tangibility to the design of digital models. After defining a shape to extrude, the users follow the lead of a hand-held actuated extruder to instantiate the actual extrusion using wax. The tangibility of the wax extrusion sets the stage to create the next components until the digital model is completed. The digital model affords all digital attributes (ease of transformation, distribution, and 3D printing) while the wax artifact can be discarded or kept as a one-of-a-kind memento. We present a proof-of-concept implementation of D-Coil and showcase how this additive approach can also be extended to a subtractive process using a digitally actuated cutter. By adding a 6DOF mouse, users can also include scaling, rotation, and bending effects to create a wide variety of shapes often difficult for novices to produce in standard CAD software. Computer-Aided Design (CAD); Craft; Digital Fabrication; #### **ACM Classification Keywords** H.5.2 [Information interfaces and presentation]: User As predicted by Gershenfeld [5], we have seen a rapid advance towards the democratization of 3D printing in recent years. One can draw a parallel with the rise of desktop printing in the 1980's [1], with one significant difference: it is still difficult to create complex digital models ready for 3D printing. Though the interface of CAD systems has been greatly improved, the learning curve remains steep and creating complicated, smooth shapes requires the mastery of complex construction commands (such as lofting between multiple contours using guide rails). Further, the isolation of the design and fabrication process in digital CAD software makes it difficult for all Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to Figure 1: D-Coil concept: supporting 3D design using a wax proxy. but experts to anticipate how a digital model will look and feel once it is built. This stands in sharp contrast with traditional craft activities such as clay coiling in which design and construction can occur at the same time. As observed by Schön [15], the intimate interaction between the designer and the material at hand establishes a constant reflective "conversation" promoting a faster convergence towards a satisfactory design. Clay coiling also has the advantage of being easy to learn for beginners (low floor), but offering sufficient flexibility to enable experts to create highly complex models (high ceiling) [13]. > **CHI 15** Peng et.al. ## 3D modeling with no CAD interface No CAD Interface No implicit building commands Constant tangible feedback ## D-Coil No CAD interface Digitalization Slow in building speed Not for CAD users ## What if we can have a system for CAD users but with timely physical feedback? #### **On-The-Fly Print: Incremental Printing While Modeling** Huaishu Peng, Rundong Wu, Steve Marschner, François Guimbretière Computing and Information Science Cornell University Digital World {hp356, rw489}@cornell.edu, {srm, francois}@cs.cornell.edu #### ARSTRACT Current interactive fabrication tools offer tangible feedback by allowing users to work directly on the physical model, but they are slow because users need to participate in the physical instantiation of their designs. In contrast, CAD software offers powerful tools for 3D modeling but delays access to the physical workpiece until the end of the design process. In this paper we propose On-the-Fly Print: a 3D modeling approach that allows the user to design 3D models digitally while having a low-fidelity physical wireframe model printed in parallel. Our software starts printing features as soon as they are created and updates the physical model as needed Users can quickly check the design in a real usage context by removing the partial physical print from the printer and replacing it afterwards to continue printing. Digital content modification can be updated with quick physical correction using a retractable cutting blade. We present the detailed description of On-the-Fly Print and showcase several examples designed and printed with our system. #### **Author Keywords** 3D printing; fabrication; computational craft; CAD; rapid prototyping; interactive devices. #### ACM Classification Keywords H.5.m. Information interfaces and presentation (e.g., HCI): User Interfaces. #### ITRODUCTION Since the notion of interactive fabrication was introduced by Willis et al. [32], several approaches have been proposed for hands-on digital fabrication. For example, Constructable [17] allows the step-by-step fabrication of functional objects using a laser cutter controlled by a laser pointer; D-Coil [19] enables non-experts to design 3D digital models from scratch using a digitally controlled wax extruder; ReForm [31] merges manual shaping with digital milling and extrusion of synthetic clay. On the one hand, these interactive fabrication systems offer immediate, tangible feedback that can benefit Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. CHI 16 Peng et.al. ## To support design and fab in parallel our machine should be able to print fast print incrementally make subtractive changes # To support design and fab in parallel our machine should be able to print fast (to catch up the CAD design speed) print incrementally make subtractive changes # To support design and fab in parallel our machine should be able to print fast print incrementally (to avoid reprint every time) make subtractive changes ## To support design and fab in parallel our machine should be able to print fast print incrementally make subtractive changes (to reflect digital editing) ## To allow the designer to focus on the design our software should be able to print new primitives automatically solve potential collisions ### Software Workflow optimize printing order Relaxing printing orientation | Out of order printing | Omitting geometries #### **RoMA: Interactive Fabrication** with Augmented Reality and a Robotic 3D Printer Huaishu Peng¹, Jimmy Briggs^{1*}, Cheng-Yao Wang^{1*}, Kevin Guo¹, Joseph Kider⁴, Stefanie Mueller³, Patrick Baudisch², François Guimbretière¹ > Hasso Plattner Institute Potsdam, Germany patrick.baudisch@ hpi.de MIT CSAIL Cambridge, MA, USA stefanie.mueller@mit.edu Univ. of Central Florida Orlando, FL, USA jkider@ist.ucf.edu We present the Robotic Modeling Assistant (RoMA), an interactive fabrication system providing a fast, precise, hands-on and *in-situ* modeling experience. As a designer creates a new model using RoMA AR CAD editor, features are constructed concurrently by a 3D printing robotic arm sharing the same design volume. The partially printed sharing the same design volune. The partiary printed physical model then serves as a tangible reference for the designer as she adds new elements to her design. RoMA's proxemics-inspired handshake mechanism between the designer and the 3D printing robotic arm allows the designer to quickly interrupt printing to access a printed area or to indicate that the robot can take full control of the model to finish printing. RoMA lets users integrate real-world constraints into a design rapidly, allowing them to create well-proportioned tangible artifacts or to extend existing objects. We conclude by presenting the strengths and limitations of our current design. 3D printing; Augmented Reality; Interactive Fabrication; CAD; Rapid Prototyping; Physical Prototyping. H5.2 [Information interfaces and presentation]: User Interactive fabrication [43] entails a hands-on approach during the 3D modeling process to offer a reflective design experience. This concept has been developed with several approaches [4]. For example, Constructables [24] proposes a step-by-step laser cutting system to design 3D assemblies from 2D physical cutouts. D-Coil [28] allows the user to create a 3D digital model by directly handcrafting its Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full Figure 1: a) RoMA overview. b). Designer view from the AR headset. The designer creates a digital spout while the robot prints the teapot body. Digital model is overlaid onto the physical model. physical counterpart. On-the-Fly Print [27] combines CAD digital modeling with incremental low-fidelity physical rendering, while ReForm [41] combines hand modeling with digital carving of clay to create a 3D model. Each system has a different set of trade-offs. For example, the D-Coil process mirrors the hands-on approach of clay-coiling, but forces the > **CHI 18** Peng et.al. ## Design and fabrication directly ON a physical object ## Proxemics-based interaction Designer Zone 3 **Robot Parks** Adding and removing material is still very slow Can we **directly reshape** the material? ## **Formative** manufacturing **Subtractive** manufacturing **Additive** manufacturing #### FormFab: Continuous Interactive Fabrication Stefanie Mueller^{1,2}, Anna Seufert², Huaishu Peng^{3,4}, Robert Kovacs², Kevin Reuss², François Guimbretière³, Patrick Baudisch² MIT CSAIL¹ Hasso Plattner Institute² Cornell University³ University of Maryland⁴ Cambridge, MA, USA Potsdam, Germany Ithaca, NY, USA tefanie.mueller@mit.edu patrick.baudisch@hpi.de fvg3@cornell.edu huaishu@cs.umd.edu #### ABSTRACT Several systems have illustrated the concept of interactive fabrication, i.e. rather than working through a digital editor, users make edits directly on the physical workpiece. However, so far the interaction has been limited to turn-taking, i.e., users first perform a command and then the system responds with physical feedback. In this paper, we present a first step towards interactive fabrication that changes the workpiece continuously while the user is manipulating it. To achieve this, our system FormFab does not add or subtract material but instead reshapes it (formative fabrication). A heat gun attached to a robotic arm warms up a thermoplastic sheet until it becomes compliant; users then control a pneumatic system that applies either pressure or vacuum thereby pushing the material outwards or pulling it inwards. Since FormFab reshapes the workpiece continuously while users are moving their hands, users can interactively explore different sizes of a shape with a single interaction. **Author Keywords:** personal fabrication; interactive fabrication; direct manipulation; 3D modeling tools. #### INTRODUCTION Recently, Willis et al. [28] proposed the concept of Interactive Fabrication. The key idea is to bring the principles of direct manipulation [20] to the editing of physical objects: Instead of working on a digital 3D model and producing the physical version only at the end, users make edits directly on the physical workpiece and see it change immediately. Early interactive fabrication systems, such as Shaper [28], CoppCAD [5], and constructable [14], allow for hands-onediting on the physical workpiece. However, their interaction is best described as turn-taking: users first provide their Figure 1: (a) FormFab changes the workpiece continuously while the user is interacting with it. First, a heatgun warms up the workpiece. Once the material has become compliant, (b) the user's hand gesture interactively controls a pneumatic system that applies pressure or vacuum, pushing the material outwards or pulling it inwards. input to the system and then the system responds with physical feedback. Since there are two discrete steps, users can only explore one option per turn [2]. > TEI 19 Mueller et.al. Selectively heat the material Directly manipulating the area with gestures Limitations Slow heating process Limited expressiveness How to further improve the system? ## What if we can generate physical models in seconds? Fast shape changing speed But only 2.5D And it's not detachable **Future Interactive Tech** ## A quick recap ### Learn Varies interactive technologies Technologies behind the scene # **Do**Hands-on building skills Build interactive gadgets ### **Varies interactive technologies** Multi-touch #### FTIR - Frustrated Total Internal Reflection ### **Varies interactive technologies** Multi-touch Sensing lines to detect electric current Driving lines with constant electric current Mobile interaction #### **TapSense**: Enhancing Finger Interaction on Touch Surfaces Acoustic sensing: Sensing vibration -> Microphone; IMU, etc For prototyping? Mobile interaction **Tracko:** Ad-hoc Mobile 3D Tracking Using Bluetooth Low **Energy and Inaudible Signals for Cross-Device Interaction** BLE (only) knows the **presence** of a neighbor device > Tracko knows the actual locations #### Tracko Ad-hoc Mobile 3D Tracking Using Bluetooth Low Energy and Inaudible Signals for Cross-Device Interaction Haojian Jin¹ Christian Holz^{1,2} ¹Yahoo Labs Kasper Hornbæk² ²University of Copenhagen Smart watch interactions #### <u>ViBand</u>: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers #### Sensing principle Use the high-speed mode of existing accelerometer Only need to modify it's kernel – pure software solution! Tangible interaction # **Historical Development of UI** #### **Textual** ## Graphical #### **Embodied** Tangible interaction CHI 2007 Proceedings · Tangibility April 28-May 3, 2007 - San Jose, CA, USA #### Mechanical Constraints as Computational Constraints in Tabletop Tangible Interfaces James Patten MIT Media Lab 20 Ames St. Cambridge, Ma . 02139 jpatten@media.mit.edu #### ARSTRACT This paper presents a new type of human-computer interface called Pico (Physical Intervention in Computational Optimization) based on mechanical constraints that combines some of the tactile feedback and affordances of mechanical systems with the abstract computational power of modern computers. The interface is based on a tabletop interaction surface that can sense and move small objects on top of it. The positions of these physical objects represent and control parameters inside a software application, such as a system for optimizing the configuration of radio towers in a cellular telephone network. The computer autonomously attempts to optimize the network, moving the objects on the table as it changes their corresponding parameters in software. As these objects move, the user can constrain their motion with his or her hands, or many other kinds of physical objects. The interface provides ample opportunities for improvisation by allowing the user to employ a rich variety of everyday physical objects as mechanical constraints. This approach leverages the user's mechanical intuition for how objects respond to physical forces. As well, it allows the user to balance the numerical optimization performed by the computer with other goals that are difficult to quantify. Subjects in an evaluation were more effective at solving a complex spatial layout problem using this system than with either of two alternative interfaces that did not feature actuation. #### Author Keywords tangible interfaces, physical interaction, interactive surface, improvisation, actuation. ACM Classification Keywords Hiroshi Ishii MIT Media Lab 20 Ames St. Cambridge, Ma . 02139 ishii@media.mit.edu Figure 1: A flexible "artist's curve" constraining the motion of a cellphone tower in the Pico system. ical process. The user can leverage his or her mechanical intuition about the way physical objects respond to forces and interact with each other to understand how common objects, such as a rubber band or coffee cup, might be used to constrain the underlying software process. Objects on the Pico table are moved not only under software control using electromagnets but also by users standing around the table. The combination of these interactions, all governed by the friction and mass of the objects themselves directly affects the result of the task being performed. Additional information is graphically projected onto the table from above. In this narse we will show how this technique Display Display ves this is real wool and real felt.any idea how this works? Haptic # Mechanoreception Haptic + VR **Fabrication** **Fabrication** Tracking: 6DOF Magnetic tracking Control: stop milling at the edge of the digital model Control can be overridden with manual control What can this do that the previous project cannot? Fabrication Fabrication To cut-through we need to have the laser focused to the top surface of the material Any benefit of defocusing a laser? # A quick recap ## Learn Varies interactive technologies Technologies behind the scene # **Do**Hands-on building skills Build interactive gadgets Hands-on building skills 3D modeling Digital IO -> ESP32 Analog sensing Servo motor Ultrasonic sensor I2C protocol IMU Shift register 3D printing Laser cutting Robot Competition how to invent Future Interactive Tech # how about user centered design? - interview potential users - find something that is hard to do or hard to use... - e.g. via evaluation (5 experts list usability issues) We talk about user-centered design in **CMSC434 Introduction to Human-Computer Interaction** do you think any of the cool stuff I showed in the past few weeks came out of this? nope. # Usability Evaluation Considered Harmful (Some of the Time) #### Saul Greenberg Department of Computer Science University of Calgary Calgary, Alberta, T2N 1N4, Canada saul.greenberg@ucalgary.ca #### ABSTRACT Current practice in Human Computer Interaction as encouraged by educational institutes, academic review processes, and institutions with usability groups advocate usability evaluation as a critical part of every design process. This is for good reason: usability evaluation has a significant role to play when conditions warrant it. Yet evaluation can be ineffective and even harmful if naively done 'by rule' rather than 'by thought'. If done during early stage design, it can mute creative ideas that do not conform to current interface norms. If done to test radical innovations, the many interface issues that would likely arise from an immature technology can quash what could have been an inspired vision. If done to validate an academic prototype, it may incorrectly suggest a design's scientific worthiness rather than offer a meaningful critique of how it would be adopted and used in everyday practice. If done without regard to how cultures adopt technology over time, then today's reluctant reactions by users will forestall tomorrow's eager acceptance. The choice of evaluation methodology - if any - must arise from and be appropriate for the actual problem or research question under consideration. #### Author Keywords Usability testing, interface critiques, teaching usability. #### Bill Buxton Principle Researcher Microsoft Research Redmond, WA, USA bibuxton@microsoft.com #### INTRODUCTION Usability evaluation is one of the major cornerstones of user interface design. This is for good reason. As Dix et al., remind us, such evaluation helps us "assess our designs and test our systems to ensure that they actually behave as we expect and meet the requirements of the user" [7]. This is typically done by using an evaluation method to measure or predict how effective, efficient and/or satisfied people would be when using the interface to perform one or more tasks. As commonly practiced, these usability evaluation methods range from laboratory-based user observations, controlled user studies, and/or inspection techniques [7,22,1]. The scope of this paper concerns these methods. The purpose behind usability evaluation, regardless of the actual method, can vary considerably in different contexts. Within product groups, practitioners typically evaluate products under development for 'usability bugs', where developers are expected to correct the significant problems found (i.e., iterative development). Usability evaluation can also form part of an acceptance test, where human performance while using the system is measured quantitatively to see if it falls within an acceptable criteria (e.g., time to complete a task, error rate, relative satisfaction). Or if the team is considering purchasing one of two competing products usability evaluation can #### **Challenge:** we have it pretty good already. the current world offers most of what the current world needs going with immediate needs -> small steps but if user-centered design won't work here how do you do it, how to make **big steps into the future?** but if user-centered design won't work here how do you do it, how to make **big steps into the future?** anticipate the future using what-if questions # what-if questions first time the world saw: the mouse, interactive editing, hyperlinks... -> his main contribution was not these technologies, but... Douglas Engelbart SRI, Bootstrap Institute human-computer interaction - interactive computing No verified email Homepage 'How can we augment human intellect using computing?' keep in mind that he asked this at a time when it **sounded absurd**: this was the time of mainframes & time sharing systems **no one had personal access to a computer**; there were no tools for intellectual workers (also, he could have been wrong. computer prices could have stayed high; his work would never have become relevant) Article Talk #### **Turing Award** From Wikipedia, the free encyclopedia contributions to program and systems verification. Douglas 1997 Engelbart For an inspiring vision of the future of interactive computing and the invention of key technologies to help realize this vision. 1998 Gray For seminal contributions to database and transaction processing research and technical leadership in ## what-if vision questions are more important ACM SIG CHI Lifetime Research Award how to **choose** a what-if question? #### what-if question = a wild extrapolation of what we see today (and maybe there's nothing, but at least you tried to be the first!) some more selected what-if questions... # ubiquitous computing (1991): what if a user had multiple computers/CPUs available? #### The Computer for the 21st Century Mark Weiser 1991 The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it. Consider writing, perhaps the first information technology: The ability to capture a symbolic representation of spoken language for long-term storage freed information from the limits of individual memory. Today this technology is ubiquitous in industrialized countries. Not only do books, magazines and newspapers convey written information, but so do street signs, billboards, shop signs and even graffiti. Candy wrappers are covered in writing. The constant background presence of these products of "literacy technology" does not require active attention, but the information to be conveyed is ready for use at a glance. It is difficult to imagine modern life otherwise. Silicon-based information technology, in contrast, is far from having become part of the environment. More than 50 million personal computers have been sold, and nonetheless the computer remains largely in a world of its own. It is approachable only through complex jargon that has nothing to do with the tasks for which which people actually use computers. The state of the art is perhaps analogous to the period when scribes had to know as much about making ink or baking clay as they did about writing. The arcane aura that surrounds personal computers is not just a "user interface" problem. My colleagues and I at PARC think that the idea of a "personal" computer itself is misplaced, and that the vision of laptop machines, dynabooks and "knowledge navigators" is only a transitional step toward achieving the real potential of information technology. Such machines cannot truly make computing an integral, invisible part of the way 1 computer: n users 1 computer:: 1 user n computers:: 1 user # augmented reality (1968): what if there was the perfect display everywhere I look ## tangible computing (1997): what if I operated stuff in the world not via a computer, but by actually manipulating it? # wearable (1961) + implanted: what if technology shrink past mobile? # personal fabrication (2005): what if fabrication machinery is available in every office and/or every household? looking back through the history of HCI, we see that quantum leaps have rarely resulted from studies on user needs or market research; they have come from people asking visionary what-if questions! what if questions are hard... another way to extrapolate into the future is to use **invention iterators...** after X, what is neXt? [Ramesh Raskar] idea you just heard concept patent new product product feature design art algorithm # increment (make it faster, better, cheaper) ### the first iPhone was a huge leap forward... everything else is mainly **incremental** | | • aso • 1 | ************************************** | 000
000
000
000
000
000
000
000 | | | THE STATE OF S | | | |----------------|---------------------------------|--|--|--------------------------------|---|--|---|--| | | iPhone | iPhone 3G | iPhone 3GS | iPhone 4 | iPhone 4S | iPhone 5 | iPhone 5c | iPhone 5s | | Code Name | M68 | N82 | N88 | N90 | N94 | N41 | N48 | N51 | | Model Name | iPhone 1,1 | iPhone 1,2 | iPhone 2,1 | iPhone 3,1 | iPhone 4,1 | iPhone 5,1 | iPhone 5,3 | iPhone 6,1 | | os | iPhone OS 1.0 | iPhone OS 2.0 | iPhone OS 3.0 | iOS 4 | iOS 5 | iOS 6 | iOS 7 | iOS 7 | | Screen Size | 3.5-inch 480x320 at
163ppi | 3.5-inch 480x320 at
163ppi | 3.5-inch 480x320 at 163ppi | 3.5-inch IPS 960x640 at 326ppi | 3.5-inch IPS 960x640 at 326ppi | | 4-inch 1136x640 in-
cell IPS LCD at 326ppi | 4-inch 1136x640 in-
cell IPS LCD at 326pp | | System-on-chip | Samsung S5L8900 | Samsung S5L8900 | Samsung APL0298C05 | Apple A4 | Apple A5 | Apple A6 | Apple A6 | 64-bit Apple A7, M7 motion c-processor | | CPU | ARM 1176JZ(F)-S | ARM 1176JZ(F)-S | 600MHz ARM Cortex A8 | 800MHz ARM Cortex A8 | 800MHz dual-core ARM
Cortex A9 | 1.3GHz dual-core
Swift (ARM v7s) | 1.3GHz dual-core
Swift (ARM v7s) | 1.3GHz dual-core
Cyclone (ARM v8) | | GPU | Power VR MBX Lite 3D | Power VR MBX Lite 3D | PowerVR SGX535 | PowerVR SGX535 | PowerVR dual-core
SGX543MP4 | PowerVR triple-core
SGX543MP3 | PowerVR triple-core
SGX543MP3 | PowerVR G6430 | | RAM | 128MB | 128MB | 256MB | 512MB | 512MB | 1GB | 1GB | 1GB DDR3 | | Storage | 4GB/8GB (16GB later) | 8GB/16GB | 16GB/32GB | 16GB/32GB | 16GB/32GB/64GB | 16GB/32GB/64GB | 16GB/32GB | 16GB/32GB/64GB | | Top Data Speed | EDGE | 3G 3.6 | HSPA 7.2 | HSPA 7.2 | HSPA 14.4 | LTE/DC-HSPA | LTE/DC-HSPA | LTE/DC-HSPA | | SIM | Mini | Mini | Mini | Micro | Micro | Nano | Nano | Nano | | Rear Camera | 2MP | 2MP | 3MP/480p | | 8MP/1080p, f2.4, BSI,
1.4μ | 8MP/1080p, f2.4, BSI, 1.4μ | 8MP/1080p, f2.4, BSI, 1.4μ | 8MP/1080p, f2.2, BSI,
1.5μ | | Front Camera | None | None | None | VGA | VGA | 1.2MP/720p, BSI | 1.2MP/720p, BSI | 1.2MP/720p, BSI | | Bluetooth | Bluetooth 2.0 + EDR | Bluetooth 2.0 + EDR | Bluetooth 2.1 + EDR | Bluetooth 2.1 + EDR | Bluetooth 4.0 | Bluetooth 4.0 | Bluetooth 4.0 | Bluetooth 4.0 | | WiFi | 802.11 b/g | 802.11 b/g | 802.11 b/g | 802.11 b/g/n (2.4GHz) | 802.11 b/g/n (2.4GHz) | 802.11 b/g/n (2.4 and 5GHz) | 802.11 b/g/n (2.4 and 5GHz) | 802.11 b/g/n (2.4 and 5GHz) | | GPS | None | aGPS | aGPS | aGPS | aGPS, GLONASS | aGPS, GLONASS | aGPS, GLONASS | aGPS, GLONASS | | Sensors | Light, accelerometer, proximity | Light, accelerometer, proximity | Light, accelerometer, proximity, compass | proximity, compass, | Light, accelerometer,
proximity, compass,
gyroscope, infrared | Light, accelerometer, proximity, compass, gyroscope, infrared | Light, accelerometer, proximity, compass, gyroscope, infrared | Light, accelerometer,
proximity, compass,
gyroscope, infrared,
fingerprint identity | touch screen is better to use... screen size becomes a bit bigger.. camera resolution becomes a bit higher... # better = pick your favorite adjective: - more context aware - more adaptive - more (temporally) coherent - more progressive - more efficient - more parallelized - more distributed - more personalized/customized - more democratized least innovative X++ is a sign that the **field or tech is "maturing"** increments get smaller, less ground-breaking given a problem, find all solutions... e.g. 3D Printing is **not interactive** #### solution 1: #### solution 2: solution 3: — dance around the same problem given a cool solution find other problems -> high inventive power #### multitouch: for hands -> multitouch for feet look back at your career what could be **your hammer?** <something you know a lot about but others know little> flickr -> youtube text, audio (speech), image, video -> physical objects visible images -> infrared sound -> ultrasound -> electromagnetic spectrum macro scale -> micro scale airbag for car -> airbag for .. ? = generalize the concept (common in patent applications) variation for hammer re-use, but more **actionable** (extend solution to next dimension) ### **X+Y** fusion of the dissimilar X+Y is only good when value(X+Y) > value(X)+value(Y) #### bad example: mounting touchscreen on mouse offers exactly the same value as mouse & touchscreen separate **good example: food printing + perception:**maybe automation can feed some new insight back into perception research high innovative power, but not very actionable because for a given X the search space of all Y is large and unstructured X do the opposite Straddle Method for High Jump 1968 Olympics: "Fosbury Flop" everyone adds touch screens to the front, instead add it on the back #### process: look at existing designs. find point(s) where everyone made the same decision #### stand at the edge of the 'known world' awards (best paper, best product, researchers) **network** and talk to people: avoid small-talk .. ask 'what is the latest x' patents (but searching them is time-consuming) (do not always) follow the hype too much competition any template will produce the same ideas as everyone else who uses the same templates address this by - 1. using a wilder set of iterators than others - 2. make your very own iterators #### conclusions "so many people get stuck in incremental research: 'my double click mouse is better than your double click mouse'" "do what I call vision-driven research..." [Ishii at UIST'11] ## great project: - 1. novel = not done - **2.** important = future people will say "this matters to us" - 3. something you can do = you have/can acquire the skills https://courseexp.umd.edu/ Your feedback will help us improve the course in the future ©